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Abstract. The relativistic coupled cluster theory is employed to calculate electric quadrupole (E2) transi-
tion probabilities among the doublet states of Mg II which are of interest in astrophysical problems. This
is the first time a highly correlated fully ab initio method has been used to compute these quantities for
this particular ion. The line strengths and transition probabilities of a number of different transitions are
reported and compared with those available in the literature.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding

1 Introduction

Forbidden radiative decays are generally observed only in
low density regions between astronomical objects and in
laboratory tokamak plasmas, where collisional deexcita-
tion of metastable states is rather rare, leading to an accu-
mulation of electrons in that level. These forbidden tran-
sitions can be used to obtain information about plasma
temperature and dynamics [1]. Furthermore, the require-
ment for the medium to be of low density becomes less
critical with highly ionized atoms of relatively high Z [2].
Electric quadrupole interactions are among the few im-
portant sources of hyperfine structure in atomic spectra.
Transition lines of alkali-like atomic ions are important in
astronomical observations as well as in laser cooling. For
example, radiation of 2796 Åwavelength has been used in
laser cooling setups for Mg II [3]. The basic theory of elec-
tric quadrupole (E2) radiation was given by Condon and
Shortley [4]. Some of the methods used by Shortley could
not be applied readily readily to more complicated atoms,
and for this purpose Garstang [5,6] reformulated the the-
ory of electric quadrupole interactions using the methods
developed by Racah [7,8].

The combination of high spectral resolution, photo-
metric precision and sensitivity, which come along with
the latest generation of spectrographs, has motivated the
study of UV interstellar absorption lines. This study en-
ables a detailed examination of individual absorption re-
gions in the interstellar medium (ISM). The strong near-
UV Mg II lines are generally highly saturated along most
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interstellar lines outside the local ISM and usually yield
extremely uncertain estimates of Mg II column densities
in interstellar gas. Since Mg is predominantly in the singly
ionized form in the neutral ISM i.e., H I gas, and since Mg
is expected to be a significant constituent of interstellar
dust grains, the far-UV lines are critical for assessing the
role of this important element in the ISM.

Forbidden emission lines of Mg II from the metastable
levels are important as they are abundant in Solar
flares [9]. Because of the relatively longer wavelengths of
some E2 transitions, compared to wavelengths of the al-
lowed transitions in the same ion, they can provide infor-
mation on the thermal Doppler effect. The extreme ul-
traviolet (EUV) solar spectrum in the several hundred
angstroms wavelength region provides a direct access to
the physical conditions in the outer layers of the solar at-
mosphere from the chromosphere to the high temperature
domain of the inner corona [10].

Spectroscopists have been looking for forbidden
32S1/2−n2D3/2,5/2 transitions in astrophysical objects
since 1916 [11]. Accurate calculations of the rates of these
transitions are a challenge to atomic theorists. Unlike neu-
tral sodium, these transitions of Mg II corresponding to
the same principal quantum number do not seem to have
been observed in the laboratory, probably because the line
is expected to be stronger than the Na I lines and so it
may be more difficult to observe in experiments. There-
fore, it is very likely that they may be present in the solar
spectrum in emission [12]. Sandlin et al. [13] had observed
few unidentified lines which are close to these transition
lines. Also transitions to upper levels, i.e., higher n val-
ues are interesting, particularly in the presence of electric
fields.
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The first computation of the electric quadrupole tran-
sitions for Mg II was carried out by Warner [14] who
had taken into account the spin-orbit interaction. Tull
et al. [15] had used frozen core Hartree-Fock (HF) or-
bitals for the evaluation of these forbidden lines. A non-
relativistic model potential approach was used by Black
et al. [16] to calculate the 3d(2D)−3s(2S) transition prob-
ability of Mg II. Our recent calculations [17] on allowed
transitions of Mg II system has shown that the relativistic
coupled cluster approach is a suitable method for comput-
ing highly accurate excitation energies and wavefunctions
of the states. We have used this approach in the present
work to calculate a large number of excitation energies
and transition rates for Mg+. These data supersede ear-
lier calculations that were carried out over three decades
ago [14–16].

2 Theory

We start with a N -electron closed shell Dirac-Fock (DF)
reference state |Φ〉 and write the corresponding correlated
closed shell state as

|Ψ〉 = eT |Φ〉 (1)

where T is the core electron excitation operator. In the
present context, |Ψ〉 corresponds to the correlated ground
state of Mg++ system. The Dirac-Coulomb equation

HeT |Φ〉 = EeT |Φ〉 (2)

with

H =
∑

i

cαi · pi + (βi − 1)mc2 + VN +
∑
i<j

1
rij

leads to the exact ground state energy E of closed shell
part of the system. Here α and β are Dirac matrices and
VN is the nuclear potential. However, it is technically sim-
pler to transcribe H in the occupancy number represen-
tation and use only the positive energy part of the orbital
spectrum. Using the DF state |Φ〉 with the lowest positive
energy states occupied as the Fermi vacuum, it is conve-
nient to define the normal ordered Hamiltonian

H̃ ≡ H − 〈Φ|H |Φ〉 = H − EDF , (3)

where EDF = 〈Φ|H |Φ〉 and then solve the modified Dirac-
Coulomb equation

H̃eT |Φ〉 = (E − EDF )eT |Φ〉 ≡ EcorreT |Φ〉. (4)

The Dirac-Coulomb Hamiltonian can also be written by
explicitly including the positive energy projection opera-
tors [18]. However, Mittleman has shown that the Hamil-
tonian we have defined above implicitly contains these pro-
jection operators if we restrict our calculation to the space
defined by the positive energy orbitals [19].

After projecting with 〈Φ|e−T from the left we obtain
the correlation energy

〈Φ|H̄ |Φ〉 = Ecorr, (5)

where we have defined the dressed, normal ordered Hamil-
tonian

H̄ = e−T H̃eT . (6)

If we project any of the excited determinants 〈Φ∗|e−T from
the left of equation (4) we additionally get the set of equa-
tions,

〈Φ∗|H̄ |Φ〉 = 0. (7)

Equations (5) and (7) are the coupled cluster equations.
First, the set of equation (7) has to be solved to yield the
cluster operator T , which then can be used to define the
dressed Hamiltonian H̄ and to evaluate the correlation en-
ergy Ecorr. In the CCSD (coupled cluster singles and dou-
bles) approximation, the cluster operator T is composed of
one- and two-body excitation operators, i.e., T = T1 +T2,
which are expressed in terms of second quantization,

T = T1 + T2 =
∑
ap

a+
p aatpa +

∑
abpq

a+
p a+

q abaatpq
ab

After the contraction of the ladder operators [20] and re-
arranging the indices, equation (7) can be expressed in the
following matrix form:

A + B(T ) · T = 0, (8)

where A is a constant vector which consists of the ele-
ments 〈Φ∗|H̃|Φ〉 and the matrix B(T ) itself depends on
the cluster amplitude so that equation (8) has to solved
in a self-consistent manner.

Because of the spherical symmetry of atoms, the above
derived equations can be separated into a radial and an
angular part, which greatly simplifies the computational
complexity of both DF and post-DF calculations. The cor-
responding angular factors can be derived by applying
the graphical method of the angular momentum adapta-
tion scheme [21], popularly known as the JLV [22]. The
multi-pole expansion of the Coulomb operator is given in
many text books [23–25]. Similarly, in the |jm〉 basis, the
one- and two-body cluster operator T1 and T2 can be ex-
pressed as

tpa = 〈p|T1|a〉 =
∑
jama

T 0
1 (p, a)δ(ja, jp)δ(ma, mp) (9)

and

tpq
ab = 〈pq|T2|ab〉

=
∑

(
k,jamajpmp

jbmbjqmq

) T k
2 (p, q, a, b)(−1)(jp−mp+jq−mq)

×
(

jp k ja

−mp q ma

) (
jq k jb

−mq q mb

)
· (10)

Here, T k
2 (p, q, a, b) denotes the radial cluster operator, de-

pending on the multi-pole k, the orbital indices a, b (oc-
cupied orbitals) and p, q (virtual orbitals), which is mul-
tiplied by a phase factor and the appropriate Wigner
3j-symbols. Applying the multi-pole expansion of the
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Coulomb operator and the cluster operator T together
with the JLV scheme, the angular momentum reduction
of the CC equations is straightforward. For the angular
part of the Coulomb matrix element we can derive the
constraints

(−1)la+lc+k = 1 and (−1)lb+ld+k = 1. (11)

The above constraints have to be satisfied only in the CC
diagrams which contain the Coulomb integrations in less
than third order (i.e. during the first iteration; then the
cluster operator itself represents one order in Coulomb in-
teraction), whereas higher order Coulomb interactions (in
later iterations) lead to coupled angular momenta which
violate equation (11). The excitations, which satisfy equa-
tion (11), are called even-parity pair channels (EPC). Liu
et al. [26] have argued that the EPC provide the dominant
contribution to the CC equations and therefore it might
be a valid approximation to discard the odd-parity pair
channels (OPC) and in this way the number of cluster
amplitudes and the computational effort reduces by a fac-
tor of half. We have followed this suggestion and applied
the CC approach to only EPC cluster amplitudes, which
we shall refer to as the CCSD-EPC approximation.

The ground state of Mg+ contains only one valence
electron in the 3s1/2 orbital. One way to evaluate the
ground state energy of Mg+ is to first compute the cor-
relations within the closed shell system Mg++ using the
closed shell CC approach and then add another electron
to the 3s1/2 orbital with the help of the open shell CC
(OSCC) technique [27]. Similarly, the valence electron can
be added to any other orbital to yield excitation energies.
In order to add an electron to the kth virtual orbital of
the DF reference state we define

|Φn+1
k 〉 ≡ a†

k|Φ〉 (12)

with the particle creation operator a†
k. We now define the

exact state using excitation operators for both, the core
electrons and the valence electron, in the following way:

|Ψn+1
k 〉 = eT {eSk}|Φn+1

k 〉 (13)

where {eSk} is the normal ordered exponential represent-
ing the valence part of the wave-operator [25]. Sk itself is
also in normal order and both are normal ordered with
respect to |Φ〉. Since Sk has to contain the particle an-
nihilation operator ak, because of the normal ordering it
cannot be connected to any other valence electron exci-
tation operator so that {eSk} reduces to (1 + Sk) and we
can write equation (13) as

|Ψn+1
k 〉 = eT (1 + Sk)|Φn+1

k 〉. (14)

Following the same procedure as in the closed shell ap-
proach, we obtain a set of equations

〈Φn+1
k |H̄(1 + Sk)|Φn+1

k 〉 = ∆Ek, (15)

and

〈Φ∗,n+1
k |H̄(1 + Sk)|Φn+1

k 〉 = ∆Ek〈Φ∗,n+1
k |Sk|Φn+1

k 〉. (16)

Here, ∆Ek is the difference between the energy of the
single reference state |Ψn+1

k 〉 and the closed shell state |Ψ〉.
(The operators in left hand side of Eq. (15) and both sides
of Eq. (16) are connected). Equation (16) is nonlinear in
Sk because the energy difference ∆Ek itself is a function
of Sk. These equations have to be solved self-consistently
to determine the Sk-amplitudes [28].

The next step in the calculation is the inclusion of the
triple excitations in an approximate way using

Spqr
abk =

V̂ T2 + V̂ S2

εa + εb + εk − εp − εq − εr
(17)

where Spqr
abk are the amplitudes corresponding to the simul-

taneous excitation of orbitals a, b, k to p, q, r; V̂ T , V̂ S are
the correlated composites involving V and T , and V and
S respectively. εi is the orbital energy of the ith orbital.
This contribution is added to the energy obtained using
singles and doubles.

The definition of the line strength in atomic unit (e2a4
◦)

of a electric quadrupole transition from |Ψi〉 to |Ψf 〉 is

Sfi = |Qfi|2

=
∑

mf ,mi

|〈Ψf |Q|Ψi〉|2

=
∑

mf ,mi

∑
q

(2Jf + 1)
(

jf 2 ji

−mf q mi

)2

|〈Ψf ||Q||Ψi〉|2

=
∑

q

(2Jf + 1)
5

|〈Ψf ||C2r2||Ψi〉|2

= (2Jf + 1)〈χf ||C2||χi〉2|〈Rf |r2|Ri〉|2

= (2Jf + 1)(2Ji + 1)
(

jf 2 ji

− 1
2 0 1

2

)2

|〈Rf |r2|Ri〉|2 (18)

where χf and χi are the angular part of the final and
initial states, and Rf and Ri are the radial part of the
final and initial states.

In our case the initial and final states are not normal-
ized. Therefore,

Qfi =
〈Ψf |Q|Ψi〉√〈Ψf |Ψf 〉

√〈Ψi|Ψi〉
, (19)

where

〈Ψf |Q|Ψi〉 = 〈Φn+1
f |{eS†

f }Q̄{eSi}|Φn+1
i 〉. (20)

Q̄ = eT †
Q eT and Q is the electric quadrupole moment

operator as defined above. The connected parts of equa-
tion (19) and equation (20) will contribute and hence we
only compute those parts in our quadrupole matrix ele-
ment calculations.

Q̄ gives rise to a non-terminating series and conse-
quently the matrix element of Q given in equation (20)
contains an infinite number of terms. It is indeed possi-
ble to express Q̄ diagramtically in terms of uncontracted
single particle lines The fully contracted part of this will
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Transition Multiplets SOa HFb CCSD(T)

3s → 3d 2S1/2−2D3/2 1.17 × 10−5 0.887 × 10−5

2S1/2−2D5/2 1.77 × 10−5 1.330 × 10−5

addition of the multiplets 2.94 × 10−5 1.47 × 10−5 2.227 × 10−5

3s → 4d 2S1/2−2D3/2 0.77 × 10−6 0.685 × 10−6

2S1/2−2D5/2 1.47 × 10−6 1.027 × 10−6

addition of the multiplets 2.24 × 10−6 1.20 × 10−6 1.712 × 10−6

Table 1. Comparison of gf -value
of E2 transitions of 32S to n2D of
Mg II; a: method using spin-orbit
interaction [14], b: HF method [15].

not contribute as it cannot be linked with the remain-
ing part of the expression. Terms with two uncontracted
lines (one incoming and one outgoing) are called one-body
terms and terms with four uncontracted lines (two incom-
ing and two outgoing) are called two-body terms and so
on. Finally, all these diagrams with uncontracted lines are
made fully contracted with S-operators in order to ex-
press it in a form that can be readily computed. We have
considered the contributions from the one and two-body
terms in the present work as the three and higher-body
terms can be argued to be very small [29].

The transition probability (in s−1) of the electric
quadrupole transition is related to the line strength by

giAif = (1.119896× 1018/λ5)S. (21)

3 Computations

The DF ground orbitals for Mg+ were calculated us-
ing a novel approach discussed in our earlier papers [30,
31]. This approach uses the finite basis set expansion
method (FBSE) in the framework of Gaussian-type or-
bitals (GTO) and the numerical orbitals obtained by
running the GRASP code [32]. A large basis set of
(30s25p25d20f15g) Gaussian-type functions of the form

Fi,k(r) = rke−αir
2

(22)

with k = 0, 1, 2, ... for s, p, d, ..., respectively, is used to
construct the FBSE. For the exponents, the universal even
tempering condition

αi = αi−1β, i = 1, ..., N (23)

was applied. Here, N is the number of basis functions for
a specific symmetry. We have used α◦ = 0.001 and β =
2.90 for all symmetries.

The starting point of this calculation is the genera-
tion of DF orbitals for the Mg++ core, where orbitals
were stored on a grid. Though we have used a large
basis space for the generation of the orbitals, from our
past experience [27] we restrict the number of basis or-
bitals for the coupled cluster calculation by imposing an
upper bound in energy for all single particle orbitals of
s-, p1/2-, p3/2-symmetries by 1500 a.u., d3/2-, d5/2-, f5/2-,
f7/2-symmetries by 500 a.u. and g7/2, g9/2 symmetries by
5 a.u. This is done to reduce the huge memory required to
store the matrix elements of the dressed operator H̄ and
the two electron coulomb interaction in the main memory.
We have included all the singles, doubles and partial triple
excitations from the core in the present calculations.

Table 2. Comparison of the line strength of E2 transitions
among the states of same orbital quantum numbers of Mg II
with the MCHF method.

Transition Multiplets MCHF CCSD(T)

3p → 3p 2P1/2−2P3/2 1.476 × 102 1.505 × 102

3p → 4p 2P1/2−2P3/2 7.855 × 101 7.755 × 101

3p → 4p 2P3/2−2P3/2 7.877 × 101 7.397 × 101

3d → 3d 2D3/2−2D5/2 2.982 × 101 3.017 × 102

3d → 4d 2D3/2−2D5/2 1.705 × 102 1.785 × 102

4p → 4p 2P1/2−2P3/2 3.526 × 103 3.580 × 103

4d → 4d 2D3/2−2D5/2 4.940 × 103 5.008 × 103

4 Results and discussions

The correlation effect is rather large for excitation ener-
gies of Mg+ compared to heavier Na-like ions. Therefore,
these correlations have to be computed very accurately
in order to obtain high precision atomic data. We have
used the relativistic coupled-cluster method in order to
account for these large correlation effects. The reason for
our choice of an ab initio relativistic method based on the
Dirac-Coulomb Hamiltonian as discussed in Section 2 is
to incorporate the relativistic effects more rigorously than
Warner [14], who has considered spin-orbit effects in his
work.

In our earlier work [17] we have shown that the rela-
tivistic coupled cluster method (CCSD(T)) produces very
accurate excitation energies and electric dipole transition
rates for Mg II, which resolved one of the long standing
problem for this ion [34]. We have tested the accuracy
of our wave functions by comparing electric dipole ma-
trix elements for the length and velocity gauges. There-
fore, one can expect that the same wavefunctions should
also lead to accurate numbers for the E2 transition rates
and improve earlier results obtained with the Hartree-
Fock (HF) method [15] and other, non-relativistic meth-
ods based on model potentials [16]. Warner [14] has taken
explicit account of the spin-orbit (SO) interaction in cal-
culating his radial functions and obtained E2 transitions
strength much larger than Hartree-Fock values [15]. In Ta-
ble 1, we have made a comparison of different gf -values
for 32S1/2−n2D3/2,5/2 transitions with the earlier calcula-
tions. To compare with the HF results reported by Tull
et al., we have added the results of the multiplets and put
them in a separate row. Our results lie between the values
of other two results.

In Table 2, we have compared our calculated line
strengths with unpublished work of Froese Fischer using
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Table 3. Line strengths of E2 transitions of S to D multiplets for Mg II. [Note: in transition prob. column, Aif value calculated
with NIST excitation energy value are given inside parenthesis.]

Transition Multiplet Wave length in Å Line strength in a.u. Transition prob. in s−1

3s → 3d 2S1/2−2D3/2 1398.77 0.96403 × 102 5.010 × 103(5.040 × 103)

4d 1071.68 0.33479 × 101 0.659 × 103(0.663 × 103)

5d 966.93 0.13453 × 101 0.443 × 103(0.445 × 103)

3s → 3d 2S1/2−2D5/2 1398.79 0.14461 × 103 5.010 × 103(5.040 × 103)

4d 1071.69 0.50187 × 101 0.658 × 103(0.662 × 103)

5d 966.934 0.20198 × 101 0.443 × 103(0.446 × 103)

4s → 3d 2S1/2−2D3/2 59308.1 0.90811 × 103 0.342 × 10−3(0.346 × 10−3)

4d 4254.2 0.14646 × 104 0.293 × 103(0.294 × 103)

5d 2974.8 0.10457 × 103 0.125 × 103(0.125 × 103)

4s → 3d 2S1/2−2D5/2 59338.7 0.13624 × 104 0.342 × 10−3(0.346 × 10−3)

4d 4254.3 0.21965 × 104 0.293 × 103(0.293 × 103)

5d 2974.9 0.15693 × 103 0.125 × 103(0.126 × 103)

5s → 3d 2S1/2−2D3/2 4694.9 0.12061 × 103 0.147 × 102(0.148 × 102)

4d 192086.1 0.13541 × 105 0.144 × 10−5(0.145 × 10−4)

5d 9407.8 0.11163 × 105 0.422 × 102(0.424 × 102)

5s → 3d 2S1/2−2D5/2 4694.8 0.18105 × 103 0.148 × 102(0.148 × 102)

4d 192278.1 0.20314 × 105 0.144 × 10−4(0.144 × 10−4)

5d 9408.0 0.16741 × 105 0.422 × 102(0.424 × 102)

Table 4. Line strengths of E2 transitions of P1/2 to P3/2 multiplets for Mg II. [Note: in transition prob. column, Aif value
calculated with NIST excitation energy value are given inside parenthesis.]

Transition Multiplet Wave length Line strength Transition prob.

3p → 3p 2P1/2−2P3/2 0.15050 × 103 0.305 × 10−10(0.271 × 10−10)

4p 2223.2 0.77549 × 102 0.397 × 103(0.399 × 103)

5p 1618.1 0.57577 × 101 0.144 × 103(0.145 × 103)

4p → 3p 2P1/2−2P3/2 2229.2 0.78304 × 102 0.790 × 103(0.796 × 103)

4p 0.35803 × 104 0.296 × 10−11(0.266 × 10−11)

5p 5934.9 0.11751 × 104 0.444 × 102(0.446 × 102)

5p → 3p 2P1/2−2P3/2 1620.9 0.57595 × 101 0.286 × 103(0.288 × 103)

4p 5950.6 0.11851 × 104 0.884 × 102(0.889 × 102)

5p 0.33841 × 105 0.535 × 10−12(0.473 × 10−12)

3p → 4p 2P3/2−2P3/2 2227.7 0.73968 × 102 0.375 × 103(0.377 × 103)

5p 1620.5 0.52204 × 101 0.130 × 103(0.130 × 103)

4p → 5p 2P3/2−2P3/2 5945.7 0.11035 × 104 0.414 × 102(0.415 × 102)

multiconfiguration Hartree-Fock method (MCHF) with
Breit-Pauli approximation [35] between states having
same orbital quantum numbers (as, she has given only
these number in her web-site) and do see good agree-
ment with our results. The CC theory unlike the
MCHF method is size-consistent [20]. Also CC theory in-
corporates certain important higher order excitations that
the MCHF method does not at the same level of approx-
imation. For example, CC singles and doubles includes
not only T2 but also T 2

2 , but MCHF singles and dou-
bles only has the effects of the former. T 2

2 terms in the
MCHF method arise only when one considers quadrupole
excitations.

In Table 3, we have presented our E2 transition results
among the S–D doublet states. We have also used both

the experimental and the computed excitation energies to
calculate the transition probabilities. We observed a very
good agreement among them, as our calculated excitation
energies were already very accurate.

In Tables 4 and 6, we have presented results of our
E2 transition calculations between states of same or-
bital angular momentums. Though the line strengths of
E2 transitions between the states of same principal quan-
tum numbers given in these tables are large, their transi-
tion probabilities are rather very small due to large wave-
lengths. They fall in the far infra-red region or beyond,
and we have not put their wavelengths in the tables. Ta-
ble 5, reports E2 transition results for different multiplets
between 2P to 2F states.
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Table 5. Line strengths of E2 transitions of P to F multiplets for Mg II.

Transition Multiplet Wave length Line strength Transition prob.

3p → 4f 2P1/2−2F5/2 1720.3 0.21321 × 103 0.262 × 104

5f 1470.1 0.43542 × 102 0.117 × 104

4p → 4f 2P1/2−2F5/2 7587.2 0.64512 × 104 0.473 × 102

5f 4334.6 0.39740 × 103 0.481 × 102

5p → 4f 2P1/2−2F5/2 27356.1 0.58201 × 105 0.101 × 102

5f 16039.2 0.19724 × 104 0.116 × 104

3p → 4f 2P3/2−2F5/2 1722.9 0.61239 × 102 0.746 × 103

5f 1472.1 0.12422 × 102 0.333 × 103

4p → 4f 2P3/2−2F5/2 7604.8 0.18460 × 104 0.134 × 102

5f 4340.3 0.11430 × 103 0.137 × 102

5p → 4f 2P3/2−2F5/2 27120.1 0.21361 × 104 0.271 × 10−1

5f 16121.4 0.16671 × 105 0.286 × 101

3p → 4f 2P3/2−2F7/2 1723.0 0.36743 × 103 0.336 × 104

5f 1472.1 0.74533 × 102 0.150 × 104

4p → 4f 2P3/2−2F7/2 7604.7 0.11076 × 105 0.602 × 102

5f 4340.3 0.68573 × 103 0.618 × 102

5p → 4f 2P3/2−2F7/2 27121.1 0.12817 × 105 0.122 × 100

5f 16121.2 0.10003 × 106 0.129 × 102

Table 6. Line strengths of E2 transitions of D3/2 to D5/2 and F5/2 to F7/2 multiplets for Mg II.

Transition Multiplet Wave length Line strength Transition prob.

3d → 3d 2D3/2−2D5/2 0.30174 × 103 0.138 × 10−21

4d 4583.0 0.16857 × 103 0.155 × 102

5d 3131.98 0.83417 × 101 0.515 × 101

4d → 3d 2D3/2−2D5/2 4582.75 0.16927 × 103 0.156 × 102

4d 0.50083 × 104 0.347 × 10−21

5d 9892.6 0.17248 × 104 0.339 × 101

5d → 3d 2D3/2−2D5/2 3131.86 0.83988 × 101 0.534 × 10−2

4d 9891.77 0.17331 × 104 0.342 × 101

5d 0.37631 × 105 0.195 × 10−21

4f → 4f 2F5/2−2F7/2 0.18425 × 104 0.259 × 10−9

5f 8458.29 0.79110 × 103 0.256 × 101

5f → 4f 2F5/2−2F7/2 10214.4 0.78960 × 103 0.104 × 101

5 Conclusion

We have calculated accurate E2 transition probabilities for
Mg II, which is important in astrophysics and laboratory
plasma physics, using the ab initio all order relativistic
coupled cluster method. The line strengths of some of the
transitions which are presented in this work have, to our
knowledge, not been calculated earlier. There is a need
for such calculations due to the advent of high resolution
spectrographs and the demand for high precision compu-
tations is likely to increase in the future.

A part of this work was done on the Beowulf cluster at the
Harish-Chandra Research Institute:
http://cluster.mri.ernet.in.
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